Sampling and Sampling Distributions

- Normal Distribution
- Aims of Sampling
- Basic Principles of Probability
- Types of Random Samples
- Sampling Distributions
- Sampling Distribution of the Mean
- Standard Error of the Mean
- The Central Limit Theorem

Sampling

- Population - A group that includes all the cases
(individuals, objects, or groups)
in which the researcher is interested.
- Sample - A relatively small subset from a population (uses inferential statistics).

What is the purpose of sampling:

- The whole population is too large to question everyone (or all cities or whatever the unit of analysis is).
- It would cost too much money and take too long.
- Therefore, we choose to select a "sub-group" of the whole population to ask our questions. This will cost less and take less time.

So, what do we want our sample (i.e., sub-group of the whole population) to be able to do?

- Reflect the whole population
- We will be able to "infer" from our sample what is true for the whole population.

Inferential statistics are used to generalize from our "subgroup" (or sample) to the whole population.

Sampling Terms

- Parameter - A measure used to describe a population distribution (for example, mean or standard deviation).
- Statistic - A measure used to describe a sample (for example, mean or standard error).

Probability Sampling:

Simple Random Sampling

A sample designed in such a way as to ensure that:
every member of the population has an equal chance of being chosen
(This can be done using a table of random numbers, computer, or other means; Appendix A in your book provides a Table of Random Numbers)

Probability Sampling: Systematic Random Sampling

A method of sampling in which every Kth member in the total population is chosen for inclusion in the sample (for example every $10^{\text {th }}$ member).

To determine the very first case selected use simple random sampling and include only the first k members of the population (e.g., if the skip interval is ten, use simple random sampling to choose the first case among the first 10 cases in the population).

Probability Sampling: Systematic Random Sampling

The specific skip interval used (such as every $10^{\text {th }}$) is typically determined based on the sample size desired.

To determine the skip interval, divide the total number of cases in the population by the sample size desired.

For example, if there are 4000 cases in the population and you want a sample size of 400 , you would divide 4000 by 400 for a skip interval of every $10^{\text {th }}$ case.

Probability Sampling: Stratified Random Sampling
 A method of sampling obtained by:

(1) dividing the population into strata (or sub-groups) based on one or more variables central to our analysis and
(2) then drawing a simple random sample from each of the strata (i.e., subgroups)

- Proportionate stratified sample The size of the sample selected from each subgroup is proportional to the size of that subgroup in the entire population.
- Disproportionate stratified sample - The size of the sample selected from each subgroup is disproportional to the size of that subgroup in the population.

Disproportionate Stratified Sample
Figure 11.3 A Random Sample Stratified by Race/Ethnicity

What is sampling error?

Or, we could ask:
when we select a sample, will the sample statistic (such as the sample mean) be identical to the population parameter (such as the population mean)? The answer is "probably not". It will probably be similar but not "identical".

The difference between the sample statistic (such as a sample mean) and the actual population parameter (such as the population mean) is called sampling error.

For example,

if we drew a sample of students and found the mean age for these students to be 26 ,
but we happen to know the mean age for the whole population of students (from which the sample was drawn) is 24 ,
the sampling error would be "?"

The Delimma

Each time we take a sample, our sample statistic (such as the sample mean) will vary somewhat from the actual population parameters (such as the population mean), resulting in some degree of sampling error.
So, when we draw a sample, how much confidence can we have that the sample's statistics (such as

The answer to this dilemma is to apply knowledge that we have about a device known as the
"sampling" distribution to our sample distribution.
The sampling distribution is a

the mean for a particular variable) are similar to that of the whole population's parameters?
That is, what is the probability that the sample's statistics are a good reflection of the total population.

To create a sampling distribution, we would need to take as many different and:
(1) determine the mean for each of these samples (or other statistic of interest), and
(2) plot all these sample means to create a distribution of the means known as the sampling distribution.

Why is the sampling distribution considered a "theoretical" distribution?

Further, since we know that
What do we mean by large?
a sufficiently large single sample will typically resemble a normal curve,
we can apply characteristics of
the normal curve to our single sample if it is large.

Ideally, the sample would have at least 150 cases. However, some statisticians say 50 is plenty and, if the population is fairly normally distributed, 30 cases is enough.

So, when studying the distribution of a population we would calculate the standard deviation and then apply characteristics of the normal curve.

When studying the distribution of a sample, we would calculate the standard error and then apply characteristics of the normal.

The standard deviation for the population is referred to as the standard error when speaking of a sample.

While the standard deviation and the standard error are conceptually the same thing, the former is used with populations and the latter with samples.

Further, while they are conceptually the same thing, the standard error (of a sample) is calculated slightly differently than the standard deviation (of a population).

Because we can apply characteristics of the normal curve to our single sample, we can obtain information about the total population.

For example, when considering our sample mean and our sample standard error, we can be 68% confident that the true population mean falls somewhere between +1 and -1 standard errors of our single sample mean.

凩訝

(zijian, see you later)

